EN
Python - math.sin() method example
0
points
math.sin
is a method that takes only one parameter and returns an approximation of sine mathematical function.
import math
print(math.sin(0)) # 0 <- 0 degrees
print(math.sin(1.5707963267948966)) # ~1 <- ~90 degrees == pi / 2
print(math.sin(3.1415926535897932)) # ~0 <- ~180 degrees == pi
print(math.sin(4.71238898038469)) # ~-1 <- ~270 degrees == -pi * (3/2)
print(math.sin(6.2831853071795850)) # ~0 <- ~360 degrees == pi * 2
print(math.sin(-1.5707963267948966)) # ~-1 <- ~-90 degrees == -pi / 2
Note:
1.2246467991473532e-16
and-1.133107779529596e-15
should be equal to0
but they are not because of compuptation precision error.
1. Documentation
Syntax |
|
Parameters | x - a number that represents an angle in radians. |
Result |
If If the function can not calculate it returns |
Description | sin is a method that takes only one parameter and returns an approximation of sin(x) mathematical function. |
2. Working with radians
import math
x1 = 0.0 # beginning of calculation in radians
x2 = math.pi / 2 # ending of calculation radians
dx = math.pi / 9 # calculation step in degrees
rad = x1
while rad <= x2:
y = math.sin(rad)
print("sin(", rad, "rad ) =", y)
rad += dx
Output:
sin(0 rad) = 0
sin(0.3490658503988659 rad) = 0.3420201433256687
sin(0.6981317007977318 rad) = 0.6427876096865393
sin(1.0471975511965976 rad) = 0.8660254037844386
sin(1.3962634015954636 rad) = 0.984807753012208
3. Working with degrees
import math
def calculate_sin(deg):
radians = (math.pi / 180) * deg
return math.sin(radians)
# Example:
x1 = 0.0 # beginning of calculation in degrees
x2 = 90.0 # ending of calculation degrees
dx = 15.0 # calculation step in degrees
deg = x1
while deg <= x2:
y = calculate_sin(deg)
print("sin(", deg, " deg) = ", y)
deg += dx
Output:
sin(0 deg) = 0
sin(15 deg) = 0.25881904510252074
sin(30 deg) = 0.49999999999999994
sin(45 deg) = 0.7071067811865476
sin(60 deg) = 0.8660254037844386
sin(75 deg) = 0.9659258262890683
sin(90 deg) = 1
4. Reversed console plot example
import math
x1 = 0.0 # beginning of sine chart
x2 = 2 * 3.14 # end of sine chart
dx = 3.14 / 4.0 # x axis step
dy = 1.0 / 5.0 # y axis step
rad = x1
while rad < x2:
y1 = 0.0
y2 = math.sin(rad) + 1
line = ""
y = y1
while y < y2:
line += " "
y += dy
print(line, "+")
rad += dx
Output:
+
+
+
+
+
+
+
+