PL
JavaScript - jak obliczyć odległość między dwoma punktami w przestrzeni 3D?
0
points
Quick solution:
// P1 = (x1, y1, z1); P2 = (x2, y2, z2)
var a = x2 - x1;
var b = y2 - y1;
var c = z2 - z1;
var distance = Math.sqrt(a * a + b * b + c * c);
1. Przegląd
Obliczenie odległości między dwoma punktami jest możliwe za pomocą uśrednionego równania Pitagorasa. W tym artykule przedstawiono przykład obliczania odległości.
2. Twierdzenie matematyczne o układzie współrzędnych
Obliczenie odległości dla punktów wymaga rozpoczęcia transformacji równania Pitagorasa na wersję punktową.
a^2 + b^2 + c^2 = d^2 => d = sqrt(a^2 + b^2 + c^2)
P1 = (x1, y1, z1); P2 = (x2, y2, z2)
a = |x2 - x1|
b = |y2 - y1|
c = |z2 - z1|
d = sqrt(|x2 - x1|^2 + |y2 - y1|^2 + |z2 - z1|^2)
co można przekształcić w:
d = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)
Odległość pomiędzy P1 i P2 jest równa d.
Uwaga: wartości bezwzględnych można uniknąć ze względu na kwadraty w równaniu Pitagorasa - kwadraty usuwają minusy.
Przykładowe obliczenia:
P1 = (7, 2, 3); P2 = (3, 5, 8)
a = |x2 - x1| = |3 - 7| = 4
b = |y2 - y1| = |5 - 2| = 3
c = |z2 - z1| = |8 - 3| = 5
d = sqrt(4^2 + 3^2 + 5^2) = sqrt(16 + 9 + 25) = sqrt(50)
d = 7.071067811865475
3. Przykład funkcji niestandardowej odległości JavaScript
// ONLINE-RUNNER:browser;
function calculateDistance(p1, p2) {
var a = p2.x - p1.x;
var b = p2.y - p1.y;
var c = p2.z - p1.z;
return Math.sqrt(a * a + b * b + c * c);
}
// Przykład:
var p1 = {x: 7, y: 2, z: 3};
var p2 = {x: 3, y: 5, z: 8};
var distance = calculateDistance(p1, p2);
console.log(distance);
4. Przykład metody Math.hypot
Uwaga:
Math.hypot
zostało wprowadzone w ECMAScript 2015 .
// ONLINE-RUNNER:browser;
function calculateDistance(p1, p2) {
var a = p2.x - p1.x;
var b = p2.y - p1.y;
var c = p2.z - p1.z;
return Math.hypot(a, b, c);
}
// Przykład:
var p1 = {x: 7, y: 2, z: 3};
var p2 = {x: 3, y: 5, z: 8};
var distance = calculateDistance(p1, p2);
console.log(distance);